Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ming-Tian Li, ${ }^{\text {a,b }} \mathbf{~ X u - C h e n g ~ F u ~}{ }^{\mathbf{c}}$ and Cheng-Gang Wang ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, Shangqiu Normal University,
Shangqiu, Henan 476000, People's Republic of China, and ${ }^{\text {c}}$ Chemistry and Biology Department, West Anhui University, Liu an Anhui 237000, People's Republic of China

Correspondence e-mail:
wangcg23@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.052$
$w R$ factor $=0.123$
Data-to-parameter ratio $=14.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Aqua(2,2'-bipyridine)maleatocopper(II) dihydrate

In the molecule of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cu}(\mathrm{II})$ atom has elongated tetragonal pyramidal geometry, coordinated by one water O atom, two N atoms of the $2,2^{\prime}$-bipyridine ligand and two O atoms of the two carboxylate groups of the maleate dianion. The molecules are linked through hydrogen-bonding and $\pi-\pi$ stacking interactions, forming a two-dimensional supramolecular structure.

Comment

Metal-organic coordination complexes containing the maleate ligand have been studied extensively due to their wide range of applications (Maruoka et al., 1993; Chen \& Suslick, 1993; Hoskins \& Robson, 1990; Kondo et al., 1997). Here, we report the crystal structure of one such complex, the title compound, (I).

The structure of (I) consists of discrete monomers. The $\mathrm{Cu}^{\mathrm{II}}$ atom exhibits an elongated tetragonal pyramidal geometry, coordinated by one water O atom, two N atoms of the $2,2^{\prime}$ bipyridine ligand and two O atoms of the two carboxylate groups of the maleate dianion (Table 1, Fig. 1).

The $\mathrm{Cu}-\mathrm{O}$ (maleate) and $\mathrm{Cu}-\mathrm{O}$ (water) bonds (Table 1) are slightly longer than the corresponding ones $[1.876$ (6), $1.894(6)$ and $2.150(6) \AA$ A $]$ in $\left[\mathrm{Cu}(\mathrm{pz})_{2}(\right.$ male $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$-$1.5 \mathrm{H}_{2} \mathrm{O}$, (II), where pz and male are 3,5 -dimethylpyrazole and the maleate anion, respectively (Chen et al., 2003). It is not possible to compare the $\mathrm{Cu}-\mathrm{O}$ (water) bond in (I) with those [1.975 (2) and $2.414(2) \AA$) reported in $\left\{\left[\mathrm{Cu}\left(4,4^{\prime}-\right.\right.\right.$ bpy $)-$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]($ male $\left.)\right\} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (III) (Kang et al., 2004), due to the Jahn-Teller distortion for the $\mathrm{Cu}-\mathrm{O}$ (water) distance of 2.414 (2) \AA. The $\mathrm{Cu}-\mathrm{N}$ bonds (Table 1) are also longer than those in (II) [1.903 (7) and 1.935 (6) \AA]. The $\mathrm{Cu}^{\text {II }}$ atom is displaced by 0.2511 (5) A from the mean plane through atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{O} 1$ and O3.

Received 17 March 2006 Accepted 27 March 2006

Figure 1
The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. Hydrogen bonds are shown as dashed lines.

In the crystal structure, the molecules are packed via hydrogen bonds (Fig. 2) between water molecules and the uncoordinated O (maleate) atoms of neighbouring molecules (Table 2), and $\pi-\pi$ stacking interactions with centroidcentroid distances of 3.811 (3) and 3.974 (3) \AA between the pyridine ring of the molecule at (x, y, z) and those at $(2-x$, $-y, 2-z)$ and $(2-x,-y, 1-z)$, respectively, forming a twodimensional supramolecular structure.

Experimental

$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.241 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added slowly to an aqueous solution of maleic acid ($0.116 \mathrm{~g}, 1.0 \mathrm{mmol}, 15 \mathrm{ml}$), and the reaction mixture was stirred for 1 h at 353 K . An ethanol solution (5 ml) of 2,2'-bipyridine ($0.156 \mathrm{~g}, 1.0 \mathrm{mmol}$) was then added with continuous stirring. NaOH solution ($0.1 \mathrm{~mol} / \mathrm{l}$) was added until a pH of 7 was obtained. After 1 h , the reaction mixture was cooled to room temperature and then filtered. Blue single crystals were obtained from the filtrate after two weeks (yield $139.9 \mathrm{mg}, 36 \%$, m.p. 525 K).

Crystal data

```
[Cu(\mp@subsup{C}{10}{}\mp@subsup{H}{8}{\prime}\mp@subsup{N}{2}{})(\mp@subsup{\textrm{C}}{4}{}\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{O}}{4}{})-
    (H2O)].2H2O
Mr}=387.8
Monoclinic, P2 / /c
a=8.9793(18) \AA
b=22.487 (5) \AA
c=7.7187 (15) \AA
\beta=95.62 (3)}\mp@subsup{}{}{\circ
V=1551.0 (5) A `
Z=4
```

$D_{x}=1.661 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3123 reflections
$\theta=2.6-27.8^{\circ}$
$\mu=1.45 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, blue
$0.20 \times 0.06 \times 0.06 \mathrm{~mm}$

Figure 2
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Data collection

Bruker SMART CCD area-detector	3528 independent reflections
\quad diffractometer	2257 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.073$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2000 $)$	$h=-11 \rightarrow 11$
$T_{\min }=0.760, T_{\max }=0.918$	$k=-28 \rightarrow 24$
10456 measured reflections	$l=-9 \rightarrow 6$

Refinement

Refinement on F^{2}
H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.123$
$S=0.97$
3528 reflections
241 parameters

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.931(3)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.003(3)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.931(3)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.003(3)$
$\mathrm{Cu} 1-\mathrm{O} 5$	$2.261(3)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$93.44(12)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$107.62(12)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$91.72(12)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 5$	$100.11(12)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$90.55(12)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$86.57(12)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$80.53(13)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 5$	$93.38(12)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 a \cdots \mathrm{O} 7^{\text {i }}$	0.80 (3)	1.96 (3)	2.752 (5)	172 (5)
O7-H7b . ${ }^{\text {O6 }}$	0.75 (3)	2.07 (4)	2.819 (6)	174 (5)
O6-H6a . $\mathrm{O}_{4}{ }^{\text {ii }}$	0.75 (4)	2.18 (4)	2.889 (5)	159 (7)
$\mathrm{O} 7-\mathrm{H} 7 a \cdots \mathrm{O} 2$	0.83 (4)	2.03 (4)	2.850 (5)	169 (5)
$\mathrm{O} 5-\mathrm{H} 5 b \cdots \mathrm{O} 4^{\text {iii }}$	0.80 (3)	1.99 (3)	2.783 (4)	174 (4)
O6-H6b \cdots O2 $2^{\text {iv }}$	0.79 (4)	2.14 (4)	2.903 (5)	162 (6)

Symmetry codes: (i) $x, y, z+1$; (ii) $x+1,-y+\frac{3}{2}, z-\frac{1}{2}$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (iv) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.

Atoms H5a, H5b, H6a, H6b, H7a and H7b were located in a difference map and refined isotropically $[\mathrm{O}-\mathrm{H}=0.75$ (3)-0.83 (4) \AA and $\left.U_{\text {iso }}(\mathrm{H})=0.043(17)-0.10(3) \AA^{2}\right]$. The remaining H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H , and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve

metal-organic papers

structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Hubei Key Laboratory of Novel Chemical Reactors and Green Chemical Technology (grant No. RCT2004011).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2000). SMART (Version 6.10), SAINT (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, C.-T. \& Suslick, K. S. (1993). Coord. Chem. Rev. 128, 293-322.
Chen, X.-Y., Shen, W.-Z., Cheng, P., Yan, S.-P., Liao, D.-Z. \& Jiang, Z.-H (2003). Z. Anorg. Allg. Chem. 629, 697-702.

Hoskins, B. F. \& Robson, R. (1990). J. Am. Chem. Soc. 112, 15461554.

Kang, Y., Li, -Z. J., Qin, Y.-Y., Chen, Y.-B., Zhang, J., Hu, R.-F., Wen, Y.-H., Cheng, J.-K. \& Yao, Y.-G. (2004). Chin. J. Struct. Chem. 23, 862-864.
Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H. \& Kitagawa, S. (1997). Angew. Chem. Int. Ed. Engl. 36, 1725-1727.
Maruoka, K., Murase, N. \& Yamamoto, H. (1993). J. Org. Chem. 58, $2938-$ 2939.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (c) 2006 International Union of Crystallography All rights reserved

